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SYNCHRONIZATION OF PENDULUM CLOCKS

SUSPENDED ON AN ELASTIC BEAM

UDC 534A. Yu. Kanunnikov and R. E. Lamper

A synchronous regime in the Huygens problem is studied with allowance for nonlinear interaction
between a beam and pendulums. It is shown that the precise out-of-phase motion of different pendu-
lums noted by Huygens cannot occur. The case where the motion of the pendulums is synchronous
and close to the out-of-phase motion is studied.
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Rate synchronization of two pendulum clocks suspended on an elastic beam was first noted by Huygens [1].
This phenomenon has been studied in detail [2–5]; however, the problem was formulated under the assumption of
linear interaction between the beam and pendulums. The pendulum oscillations are sustained by clock mechanisms
represented approximately by variable damping of the Van der Pol type.

In the present paper, we consider nonlinear interaction between the beam and clocks also modeled by the
Van der Pol systems. Beam oscillations lead to parametric excitation of pendulum oscillations due to vibration of
suspension points. The maximum excitation corresponds to the principal parametric-resonance zones where the
rate of the clocks is synchronized with a frequency equal to half of the beam-oscillation frequency. Thus, it is
assumed that synchronization occurs by capturing the frequency of two Van der Pol systems under parametric
excitation. Pendulum oscillations, in turn, sustain oscillations of the beam by means of centrifugal forces for which
the frequency of the pendulums increases twofold.

1. Let the clocks be suspended symmetrically about the middle of the beam (Fig. 1). The beam deflection
is described by the vertical displacement x of one of the suspension points for a specified symmetric deflection
function. Positions of the pendulums are determined by the angles ϕi (i = 1, 2) counted from the vertical axes xi
in the opposite directions and assumed to be small. We assume that the pendulum masses m are identical, whereas
the lengths li are close but still different.

We write the kinetic energy of the system

T =
1
2
Mẋ2 +

1
2
m

2∑
i=1

(ẋ2 − 2li sin (ϕi ẋϕ̇i) + l2i ϕ̇
2
i ),

where M is the effective mass of the beam with the virtual masses of clock mechanisms and cases (without pendu-
lums). The potential energy of the system is

Π =
1
2
Mω2

beamx
2 −mg

2∑
i=1

li cosϕi,

where ωbeam is the frequency of free oscillations of the beam with virtual masses without pendulums and g is the
acceleration of gravity. The equations of motion have the form

(M + 2m)ẍ−m
2∑
i=1

li(ϕiϕ̈i + ϕ̇2
i ) = −Mω2

beamx+Qx,
(1)

ml2i ϕ̈i −mliϕiẍ = −mgliϕi +Qi, i = 1, 2.
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Here Qx is the linear-friction force in the beam and Qi are the Van der Pol nonlinear-friction forces. We write these
generalized forces as

Qx
M + 2m

= −ε0ẋ,
Qi
lim

= εi

(
1− S2

i

S2
0

)
Ṡi,

where ε0 and εi are the friction coefficients, Si = liϕi, and S0 are the deflections of the pendulums at which the
damping changes its sign.

We write Eqs. (1) as

x′′ + 2
ε0

ω
x′ + 4

ω2
0

ω2
x = µ[(y2

1)′′ + (y2
2)′′], y′′i +

(
ai −

x′′

li

)
yi = δ(1− y2

i )y′i, (2)

where
M

M + 2m
ω2

beam = ω2
0 ,

mS2
0

2l1(M + 2m)
≈ mS2

0

2l2(M + 2m)
= µ,

Si
S0

= yi, ai =
4ω2

i

ω2
,

g

li
= ω2

i , 2
ε1S

2
0

ωl1
≈ 2

ε2S
2
0

ωl2
= δ.

In Eqs. (2), the prime denotes differentiation with respect to the nondimensional time z = ωt/2 (ω is the unknown
frequency of beam oscillations). We set l1 ≈ l2 in the coefficients of small nonlinear terms and in the coefficients of
the Van der Pol damping.

2. It is expedient to determine the synchronous regime using the harmonic-balance principle. We assume
that the beam performs harmonic oscillations according to the law x = −X cos 2z. Substitution of the expression
for x into Eq. (2) yields

(1− ω2
0/ω

2)q cos 2z + δ0q sin 2z = ν[(y2
1)′′ + (y2

2)′′]; (3)

y′′i + (ai − 2q cos 2z)yi = δ(1− y2
i )y′, i = 1, 2. (4)

Here q = 2X/l, δ0 = ε0/ω, and ν = 32µ/l (l1 ≈ l2 = l).
Equations (4) without the right side are the Mathieu equations. Direct application of the harmonic-balance

principle to these equations involves difficulties since the variable coefficients multiplied by harmonic functions of
the approximate solution lead to mixed harmonics. To take into account parametric excitation, one has to introduce
the mixed harmonics into the approximate solution, which makes the calculations more difficult. Following [6], we
first eliminate the term with the variable coefficient from the equation. We seek the solution of Eqs. (4), which
describes the steady motion in the region of the expected principal parametric resonance, in the form

yi ≈ Ci ce1(z, q) +Di se1(z, q). (5)

Here ce1(z, q) and se1(z, q) are the Mathieu functions of the first order and Ci and Di are unknown constants.
Substitution of this solution into Eq. (4) yields

(Ci ce1(z, q) +Di se1(z, q))′′ + (ai − 2q cos 2z)(Ci ce1(z, q) +Di se1(z, q)) = δ(1− y2
i )y′i.
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Bearing in mind that the Mathieu functions of the first order satisfy the Mathieu equation for the eigenvalues
a

(1)
c and a

(1)
s , we obtain

(ai − a(1)
c )Ci ce1(z, q) + (ai − a(1)

s )Di se1(z, q) = δ(1− y2
i )y′i. (6)

We represent the Mathieu functions in the last equation and approximate solution (5) by the leading terms of their
expansion into power series of q

ce1(z, q) ≈ cos z, se1(z, q) ≈ sin z

and introduce the phase shifts αi into the pendulum oscillations:

yi = Ai cos(z − αi).

In (6), equating the coefficients of identical harmonics in accordance with the harmonic-balance principle
and taking into account the relations

Ci = Ai cosαi, Di = Ai sinαi,

we obtain the following system of two equations for each pendulum:

(ai − a1
c) cosαi = δ(1−A2

i /4) sinαi, (ai − a1
s) sinαi = −δ(1−A2

i /4) cosαi. (7)

Using the well-known series for the eigenvalues of the Mathieu functions, we assume that

a(1)
c = 1 + q − q2/8− . . . ≈ 1 + q, a(1)

s = 1− q − q2/8 + . . . ≈ 1− q.

Eliminating αi from Eqs. (7), we obtain

(ai − 1)2 − q2 + δ2(1−A2
i /4)2 = 0.

It follows that, for small parametric excitation of q and ai ≈ 1, the relative amplitudes of pendulum oscillations are
close to Ai ≈ 2.

Substituting the expressions for yi into Eq. (3) and determining the coefficients of cos 2z and sin 2z, we
obtain

(1− ω2
0/ω

2)q = −ν(cos 2α1 + cos 2α2)/2, δ0q = −ν(sin 2α1 + sin 2α2)/2. (8)

Thus, the system of equations for the synchronous regime comprises four equations (7) (i = 1, 2) and two
equations (8).

3. Let us find the Huygens regime α1 = α2 among possible synchronous regimes. We introduce the notation

A2
i = 4(1 + γi), ω2 = ω2

0/(1 + β), 4ω2
i = ω2

0(1 + τi).

Then, ai = 1 + β + τi + βτi = 1 + ∆i. System (7) becomes

(∆i − q) cosαi = −δγi sinαi, (∆i + q) sinαi = δγi cosαi. (9)

Dividing the first equation of (9) by the second equation for each i and using the formula of the double
argument for the cosine, we obtain

cos 2αi = ∆i/q, sin 2αi = −
√

1−∆2
i /q

2. (10)

For both pendulums, the quantities sin 2αi should be negative for the second equation of (8) to be satisfied
for reasonably small values of δ0 and not lead to the degenerate case δ0 = 0 for motion of identical pendulums.

If the initial phases are rigorously equal, relations (10) imply that ∆1 = ∆2, which corresponds to the trivial
case of motion of identical pendulums (τ1 = τ2). Let the small quantity χ characterize the difference in the rates of
separate isolated clocks. We introduce the small difference between the initial phases of the pendulums η:

τ1 = τ + χ/2, α1 = α+ η/2, τ2 = τ − χ/2, α2 = α− η/2.

It follows from (10) that

cos 2α1 = cos 2α− η sin 2α = ∆/q + (1 + β)χ/(2q),
(11)

cos 2α2 = cos 2α+ η sin 2α = ∆/q − (1 + β)χ/(2q),

where ∆ = β + τ + βτ .
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Expressions (11) yield the relation between χ and η

η = −(1 + β)χ/(2q sin 2α) or η = k(α)χ (12)

and the following expressions for determining the mean value of the initial phases:

cos 2α = ∆/q, sin 2α = −
√

1−∆2/q2, α < 0. (13)

With allowance for

sin 2α1 = sin 2α+ η cos 2α, sin 2α2 = sin 2α− η cos 2α,

from Eqs. (8) we obtain

βq = ν cos 2α, δ0q = −ν sin 2α.

This implies that

β = −δ0 cot 2α, q = −(ν/δ0) sin 2α. (14)

To calculate the synchronous regime, we choose a certain value of δ0. Given the coefficient ε0, the value of δ0
can be refined once the oscillation frequency ω is determined. Specifying the mean value of the initial phases α and
using relations (14), (13), and (11), we find successively the quantities β, q, ∆, and τ , and the coefficient k(α) from
(12). Given particular data, we can assume that the mean values of the eigenfrequencies of the pendulums and the
eigenfrequency of the beam, i.e., the quantity τ(α), are known. Of practical interest is the case τ < 0 (|α| < π/4)
where the eigenfrequency of the beam is more than twice the mean eigenfrequency of the pendulums. Figure 2
shows the calculated dependence β(α). One can see that the frequency of beam oscillations does not necessarily
coincide with its eigenfrequency. The calculation were performed for δ0 = 0.02.

4. We estimate the quantities χ and η. Let T = 86,400 sec be the duration of a day and Ti be the oscillation
period of the ith pendulum. For certainty, we assume that ω1 > ω2. In this case, the daily difference in the rate n
(difference between the number of pendulum oscillations in a day) is

n = T/T1 − T/T2 = T (ω1 − ω2)/(2π).

Taking into account the relation

ωi =
ω0

2
(1 + τi)1/2 =

ω0

2
(1 + τ)1/2 ± ω0

4
χ

(1 + τ)1/2
,

we obtain

χ = (1 + τ)nTmean/T,

where Tmean is the mean period of pendulum oscillations. According to the data of Huygens [1], Tmean ≈ 1 sec.
Confining ourselves to nonpositive values of τ , we find that maxχ ≈ 1.15 · 10−5 for n = 1.

Huygens [1] considered two ship chronometers placed in cases that contained approximately 100 pounds of
lead. Owing to these masses, the eigenfrequency of the beam decreases substantially and approaches the doubled
frequency of the pendulums. It is worth noting that the chronometers were used to determine the longitudinal
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location of the ship, and the discrepancy in the clock rate equal to one oscillation of the second pendulum in a day
corresponded to the error in determining the longitude, approximately equal to 500 m in a day (at the equator).
Thus, the number n cannot exceed several units.

Calculating the coefficient k(α) from formula (12), we obtain 175 < k(α) < 1600 for 0.175 < |α| < π/4.
In this case, the difference between the initial phases of the pendulums lies within the interval 0.002 < η < 0.018
(n = 1). If the difference in the clock rate is equal to several oscillations of the pendulums in a day, the difference
in the initial phases remains almost unnoticeable.
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